Applying ROTEM to the Management of Bleeding in Trauma

Sandro Rizoli, MD PhD FRCSC FACS
Professor Surgery & Critical Care Medicine
Trauma Program Director
Chair Trauma Care

St. Michael's
Inspired Care. Inspiring Science.
Disclosure

NONE
ROTEM for the management of trauma

ROTEM

Growing evidence usefulness
Cardiac surgery, liver transplant, etc

Incipient in trauma

Why care about a lab test?
Introduction

1. Trauma is common
2. 1st cause mortality (*young*)
3. Bleed a lot (1st hospital death; 90% cryo; 50% FFP)

Sauaia et al J Trauma 1995;38:185
Two types of bleeding:

Mechanical - surgery

Coagulopathic - blood
ROTEM for the management of trauma

Coagulopathy 21st Century

Until 2003 (Brohi)

- Bleeding
- Dilution

Coagulopathy

Hypothermia

Acidosis

Etc; etc

After 2003

- Endogenous
- Within minutes
- 25% patients
- Shock
- Tissue damage
- 3x mortality
Mechanism 1 – Anticoagulation

- Trauma
- Shock
- Thrombin generation
 - (-)
 - Clot formation anticoagulated

Endothelial damage

- TM + Thrombin
- TM + Thrombin

- PC
- APC
- FV
Mechanism 2 – Hyper fibrinolysis

- APC
- PAI-1
- tPA

Fibrinolysis

Clot lysis fibrinolysis

(-) fibrinogen
Mechanism 3 – Hypo fibrinogemia

Fibrinogen = CRITICAL

- 1^{ary} & 2^{ary} hemostasis
- 1^{st} to drop ($140\% - \text{plat } 230\%$)
- Consumption
- Dilution
- Small reserves ($10g$)
- Hyperfibrinolysis = 86% mortal.
Mechanism 4 – Other

Hypothermia & acidosis = CRITICAL

- Decrease thrombin generation
- Fibrinogen synthesis
- Fibrinogen degradation
- Clot factors (enzymes)

Mechanism 5 DIC = no evidence
Pathophysiology

- Unique & early
- Shock + tissue destruction
- Complex (multiple defects)

a. Anticoagulation = APC
b. Hyper fibrinolysis = tPA
c. Imbalances
d. Low fibrinogen
e. Hypothermia, acidosis
Management

How did the 21st century change the resuscitation of bleeding trauma patients
Management

1. **Lab-guided**
 - time to results – POC limitations
 - “catch up”
 - no evidence

Chandler *(Transfusion 2010)*
Rapid bleed panel <20min *(10-15min verbal)*
Management

2. Formula “one size fits all”
DCR or 1:1:1

everyone is (or will be) coagulopathic
everyone needs plasma (± platelet)
start plasma as early as possible
no lab required
limit use crystalloids
Management

2. **Formula “one size fits all”**

 DCR or 1:1:1

 TRFL study **CMAJ 2013;185(12)**

 inappropriate transfusion
 wastage
 increase complications *(ARDS, sepsis)*

 ?? mortality
Ideal Resuscitation

Dr McCoy (Star Trek) tricorder

Ideal: instant results

Multiple coagulopathies

Individualized care
ROTEM

Advantages over conventional tests:

1. Differentiate mechanical vs. coagulopathic
2. Guide transfusion

3. Hypo coagulation: A5 or MCF
 A5<35mm 77% massive transfusion

4. Hyper fibrinolysis: ML or LY30
 Death sentence 65-100% literature
 75% Toronto
ROTEM for Surgeons (Idiots)

- A5 < 35 give platelets
- LY30 < 95% give tranexamic acid
- CT > 100 give 4 FFP
- MCF < 7 give 10 cryo
Real Life – arrival

A. Blood Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (g/L)</td>
<td>50</td>
</tr>
<tr>
<td>Platelets (10^9/L)</td>
<td>55</td>
</tr>
<tr>
<td>INR</td>
<td>2.4</td>
</tr>
<tr>
<td>PTT (seconds)</td>
<td>> 150</td>
</tr>
<tr>
<td>D-dimers (ng/mL)</td>
<td>7750</td>
</tr>
</tbody>
</table>

B. TEG Results

![TEG Results Graph]
ROTEM for the management of trauma

30’ 4h 28h

24h

St. Michael's
Inspired Care. Inspiring Science.
Real Life

60yo M – pedestrian hit by car

Pre-hospital:
GCS 5, intubated at the scene
Hypotensive, given 4L crystalloid
Right chest tube ~ 500 mL

Trauma Room:
BP 110/50; HR 83
CT chest = multiple rib fractures
CT abd = complex pelvic fracture
Lab & Clinical Progress

<table>
<thead>
<tr>
<th></th>
<th>0h</th>
<th>4h later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>78</td>
<td>53</td>
</tr>
<tr>
<td>Plat</td>
<td>195</td>
<td>118</td>
</tr>
<tr>
<td>INR</td>
<td>1.47</td>
<td>1.47</td>
</tr>
<tr>
<td>PTT</td>
<td>3.5</td>
<td>29</td>
</tr>
<tr>
<td>Lactate</td>
<td>3.5</td>
<td>4.8</td>
</tr>
</tbody>
</table>

1st hour
3U RBC + 4U FFP

4h later = crash
Hypotensive
Taken to angio
Embolization pelvis

7.14/65/311/21 100%

Fibrinogen = 1 (normal ≥2g/L)
ROTEM for the management of trauma

EXTEM
- CT: 57 (38-79)
- α-angle: 63 (63-88)
- A5: 31 (>35)
- MCF: 53 (50-72)
- ML: 9% (<15%)

FIBTEM
- A56
- A10: 6 (7-23)
- MCF: 8 (9-25)

St. Michael's
Inspired Care. Inspiring Science.
Lethal triad coagulopathy = \textit{INR} 1.47
acidotic = \textit{lactate} 3.5/pH 7.14
bled/bleeding = \textit{Hg} 78

\textbf{ROTEM} low = A5 & fibtem MCF

4U FFP = INR not corrected (difficult correct INR 1.47)
Tranexamic acid NOT given

Coagulopathic = “crash” later (\textit{no active bleeding on CT})
? more aggressive – correct fibrinogen, platelet?

Best treatment \textbf{customized}
examination + lab (INR, lactate) + ROTEM
Management

Guess the outcome!
ROTEM for the management of trauma

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>86</td>
<td>(38-79)</td>
</tr>
<tr>
<td>CFT</td>
<td>133</td>
<td>(34-159)</td>
</tr>
<tr>
<td>α-angle</td>
<td>70</td>
<td>(63-88)</td>
</tr>
<tr>
<td>A5</td>
<td>29</td>
<td>(>35)</td>
</tr>
<tr>
<td>A10</td>
<td>5</td>
<td>(43-66)</td>
</tr>
<tr>
<td>MCF</td>
<td>28</td>
<td>(50-72)</td>
</tr>
<tr>
<td>LI30</td>
<td>12</td>
<td>(94-100)</td>
</tr>
<tr>
<td>ML</td>
<td>100%</td>
<td>(<15%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>2</td>
<td>(7-23)</td>
</tr>
<tr>
<td>A20</td>
<td>1</td>
<td>(8-24)</td>
</tr>
<tr>
<td>MCF</td>
<td>8</td>
<td>(9-25)</td>
</tr>
</tbody>
</table>
ROTEM for the management of trauma

Thank you